
Ubuntu WSL

Canonical Group Ltd

Mar 11, 2024

CONTENTS

1 Windows Subsystem for Linux 3

2 Ubuntu and WSL 5
2.1 Tutorials . 5
2.2 How-to guides . 49
2.3 Reference . 57

i

ii

Ubuntu WSL

This documentation refers to the Ubuntu distribution for WSL.

CONTENTS 1

Ubuntu WSL

2 CONTENTS

CHAPTER

ONE

WINDOWS SUBSYSTEM FOR LINUX

Windows Subsystem for Linux (WSL) lets developers run a GNU/Linux environment – including most command-
line tools, utilities, and applications – directly on Windows, unmodified, without the overhead of a traditional virtual
machine or dual-boot setup. It is a Microsoft product, developed, maintained and documented by Microsoft. You can
find their documentation here.

WSL can be installed from the Microsoft Store.

3

https://learn.microsoft.com/en-us/windows/wsl/

Ubuntu WSL

4 Chapter 1. Windows Subsystem for Linux

CHAPTER

TWO

UBUNTU AND WSL

While Microsoft provides the virtual machine, the kernel, and a few more utilities; Ubuntu provides the distribution
that runs on top of them. We develop multiple flavours of Ubuntu for WSL, which you can read more about here. These
flavours materialise as applications on the Microsoft Store.

2.1 Tutorials

2.1.1 Working with Visual Studio Code

Authored by Oliver Smith (oliver.smith@canonical.com)

The easiest way to access your Ubuntu development environment in WSL is by using Visual Studio Code via the built-in
Remote extension.

What you will learn:

• How to set up Visual Studio Code for remote development on Ubuntu on WSL

• How to start a basic Node.js webserver on Ubuntu using Visual Studio Code

What you will need:

• A PC with Windows 10 or 11

• (Optional) This tutorial uses Windows Terminal Preview, which you can get from the Windows app store

Install Ubuntu on WSL2

This tutorial assumes that you already have WSL2 installed with the latest LTS release of Ubuntu.

If not, check out our getting started tutorials for Windows 10 and Windows 11:

• Install Ubuntu on WSL2

Once you have completed the relevant tutorial, the following steps will work on either Windows 10 or 11.

5

mailto:oliver.smith@canonical.com
https://www.microsoft.com/en-us/p/windows-terminal-preview/9n8g5rfz9xk3?activetab=pivot:overviewtab

Ubuntu WSL

Install Visual Studio Code on Windows

One of the advantages of WSL is that it can interact with the native Windows version of Visual Studio Code using its
remote development extension.

To install Visual Studio Code visit the Microsoft Store and search for Visual Studio Code.

Then click Install.

Alternatively, you can install Visual Studio Code from the web link here.

6 Chapter 2. Ubuntu and WSL

https://code.visualstudio.com/Download

Ubuntu WSL

During installation, under the Additional Tasks step, ensure the Add to PATH option is checked.

2.1. Tutorials 7

Ubuntu WSL

Once the installation is complete, open Visual Studio Code.

Install the Remote Development Extension

Navigate to the Extensions menu in the sidebar and search for Remote Development.

This is an extension pack that allows you to open any folder in a container, remote machine, or in WSL. Alternatively,
you can just install Remote - WSL.

8 Chapter 2. Ubuntu and WSL

Ubuntu WSL

Once installed we can test it out by creating an example local web server with Node.js

Install Node.js and create a new project

Open your WSL Ubuntu terminal and ensure everything is up to date by typing:

sudo apt update

And then

sudo apt upgrade

Entering your password and pressing Y when prompted.

Next, install Node.js and npm:

sudo apt-get install nodejs

sudo apt install npm

Press Y when prompted.

Now, create a new folder for our server.

mkdir serverexample/

Then navigate into it:

2.1. Tutorials 9

Ubuntu WSL

cd serverexample/

Now, open up your folder in Visual Studio Code, you can do this by typing:

code .

The first time you do this, it will trigger a download for the necessary dependencies:

Once complete, your native version of Visual Studio Code will open the folder.

Creating a basic web server

In Visual Studio Code, create a new file called package.json and add the following text (original example)

{
"name": "Demo",
"version": "1.0.0",
"description": "demo project.",
"scripts": {

"lite": "lite-server --port 10001",
"start": "npm run lite"

},
"author": "",
"license": "ISC",
"devDependencies": {

"lite-server": "^1.3.1"
}

}

Save the file and then, in the same folder, create a new one called index.html

Add the following text, and then save and close:

<h1>Hello World</h1>

10 Chapter 2. Ubuntu and WSL

https://learn.microsoft.com/en-gb/archive/blogs/cdndevs/visual-studio-code-and-local-web-server#3-add-a-packagejson-file-to-the-project-folder

Ubuntu WSL

Now return to your Ubuntu terminal (or use the Visual Studio Code terminal window) and type the following to install
a server defined by the above specifications detailed in package.json:

npm install

Finally, type the following to launch the web server:

npm start

You can now navigate to localhost:10001 in your native Windows web browser by using CTRL+Left Click on the
terminal links.

That’s it!

By using Ubuntu on WSL you’re able to take advantage of the latest Node.js packages available on Linux as well as the
more streamlined command line tools.

Enjoy Ubuntu on WSL!

That’s all folks! In this tutorial, we’ve shown you how to connect the Windows version of Visual Studio Code to your
Ubuntu on WSL filesystem and launch a basic Node.js webserver.

We hope you enjoy using Ubuntu inside WSL. Don’t forget to check out our other tutorials for tips on how to optimise
your WSL setup for Data Science.

2.1. Tutorials 11

Ubuntu WSL

Further Reading

• Install Ubuntu on WSL2

• Microsoft WSL Documentation

• Setting up WSL for Data Science

• Ask Ubuntu

2.1.2 Windows and Ubuntu interoperability

Authored by Didier Roche-Tolomelli (didier.roche@canonical.com)

Some tools used during the development process are only available or are performed best on one platform and trans-
ferring data from one system to another to visualise or share can be tedious. WSL solves this problem with a feature
called interoperability.

Interoperability is the ability to transparently execute commands and applications, share files, network and environment
variables across Windows and Ubuntu.

We’ll illustrate all these notions by generating data from your Ubuntu WSL instance using your Windows user profile
directory, perform some transformations via PowerShell scripts, and finally, visualise those on Windows. We are going
to cross the chasm between the two worlds not just once, but many times, seamlessly!

What you will learn:

• How to access a service provided by a web server running on your Ubuntu WSL instance from Windows.

• Share environment variables between Windows and Ubuntu, back and forth.

• Access files across filesystems, and discover where they are located on both sides.

• Run Windows commands (command line and graphical) from your WSL instance and chain them.

What you will need:

• Know how to use command line tools on Windows or Linux.

• A PC with Windows 10 or 11.

• Optional: LibreOffice or MS Excel to visualise and manipulate generated data from Ubuntu.

Install Ubuntu on WSL2

This tutorial assumes that you already have WSL2 installed with the latest LTS release of Ubuntu.

If not, check out our getting started tutorial for Windows 10 and Windows 11:

• Install Ubuntu on WSL2

For this tutorial, we will assume that you have installed the Ubuntu main WSL application.

Once you have completed the relevant tutorial, the following steps will work on either Windows 10 or 11.

Note: in this tutorial, we consider that interoperability is turned on in WSL.conf, which is the default behaviour. If
you have disabled it, you can either use the ubuntu reconfiguration tool on Ubuntu 22.04+, or, for earlier versions,
directly modify back wsl.conf yourself as described on wsl.conf documentation. The settings you are interested in
are [Interop]: enabled and appendWindowsPath both set to true (or not being present, which defaults to true).

12 Chapter 2. Ubuntu and WSL

https://learn.microsoft.com/en-us/windows/wsl/
https://ubuntu.com/blog/wsl-for-data-scientist
https://askubuntu.com/
mailto:didier.roche@canonical.com
https://www.libreoffice.org/download/download-libreoffice/
https://www.microsoft.com/en-us/p/ubuntu/9pdxgncfsczv?rtc=1&activetab=pivot:overviewtab
https://learn.microsoft.com/en-us/windows/wsl/wsl-config

Ubuntu WSL

Share ports between WSL and Windows

Install Jupyter notebook on WSL.

Let’s install Jupyter notebook, a web-based interactive computing platform where we will generate some statistics.

1. Start our WSL instance, on a terminal, using Ubuntu:

$ ubuntu.exe

2. Install the python package manager pip:

$ sudo apt update

$ sudo apt install python3-pip

3. Get Jupyter notebook installed via pip:

$ pip install notebook

Executing Jupyter notebook.

Finally, let’s start Jupyter, by adding it to the user PATH first:

$ export PATH=$PATH:~/.local/bin
$ jupyter notebook --no-browser
[I 10:52:23.760 NotebookApp] Writing notebook server cookie secret to /home/u/.local/
→˓share/jupyter/runtime/notebook_cookie_secret
[I 10:52:24.205 NotebookApp] Serving notebooks from local directory: /home/u
[I 10:52:24.205 NotebookApp] Jupyter Notebook 6.4.10 is running at:
[I 10:52:24.205 NotebookApp] http://localhost:8888/?
→˓token=1d80ee69da6238f22bb683a4acd00025d32d15dde91cbdf4
[I 10:52:24.205 NotebookApp] or http://127.0.0.1:8888/?
→˓token=1d80ee69da6238f22bb683a4acd00025d32d15dde91cbdf4
[I 10:52:24.205 NotebookApp] Use Control-C to stop this server and shut down all kernels␣
→˓(twice to skip confirmation).
[C 10:52:24.209 NotebookApp]
To access the notebook, open this file in a browser:
file:///home/u/.local/share/jupyter/runtime/nbserver-5744-open.html
Or copy and paste one of these URLs:
http://localhost:8888/?token=1d80ee69da6238f22bb683a4acd00025d32d15dde91cbdf4
or http://127.0.0.1:8888/?token=1d80ee69da6238f22bb683a4acd00025d32d15dde91cbdf4
[I 10:53:03.628 NotebookApp] 302 GET / (127.0.0.1) 0.600000ms
[I 10:53:03.633 NotebookApp] 302 GET /tree? (127.0.0.1) 1.040000ms

If you look closely at the output, you will see that the Jupyter notebook is now running, and its interface is exposed via
its internal web server on localhost, port 8888.

2.1. Tutorials 13

https://jupyter.org/
https://pypi.org/project/pip/

Ubuntu WSL

Accessing port 8888

This port can be accessed directly from our Ubuntu WSL instance via curl, lynx (a command line web browser), or any
GUI web browser executed in WSL.

However, this tutorial is not about running Linux GUI applications from WSL (which you can do), or visualising data
in the command line, but interoperability! So, as you can guess, any network port exposed locally is also available from
Windows directly, if no conflict occurs.

Let’s try this right away: from Windows, launch a web browser and enter the URL
printed above with the corresponding token, for example: http://localhost:8888/?
token=1d80ee69da6238f22bb683a4acd00025d32d15dde91cbdf4.

And it works! You can thus easily expose and share any services that are using network ports between your Windows
machine and WSL instances!

Note: you need to keep this command line Window opened to have your Jupyter instance running. If
you close it, the service will shut down and you won’t have access to it anymore. Other command-line
operations in the same WSL instance should be done on another terminal.

Get access to Windows environment variables on WSL

Our next step is to be able to generate some statistics on our Windows user personal directory. For Jupyter to access
those, we need to know how to get access from our Ubuntu instance to the Windows partition(s). You may already
know about it by reading documentation or blog posts, but let’s do something even cooler: let’s discover it by using
environment variables!

On another terminal, under PowerShell, let’s first check our Windows user profile directory:

PS C:\Users\myuser> echo $env:USERPROFILE
C:\Users\myuser

Let’s share it with Ubuntu by setting WSLENV:

14 Chapter 2. Ubuntu and WSL

Ubuntu WSL

PS C:\Users\myuser> $env:WSLENV="USERPROFILE"
PS C:\Users\myuser> ubuntu.exe
$ echo $USERPROFILE
C:\Users\myuser

Awesome! Setting WSLENV="ENVVAR1:ENVVAR2:..." allows us to share multiple environment variables from Win-
dows to our Ubuntu instance. We can then retrieve the value under Ubuntu.

However, you may notice that the environment variable value was shared as is, which is fine in most cases but not for
path-related content. Let’s check:

$ ls 'C:\Users\myuser'
ls: cannot access 'C:\Users\myuser': No such file or directory

Indeed, C:\Users\myuser is not a compatible Linux-path where the Windows file system is located under WSL.

But we haven’t done all that for nothing! WSLENV variable declaration can be suffixed with /p, which then translates
any paths between Windows and your Linux instance.

Let’s try again:

$ exit
PS C:\Users\myuser> $env:WSLENV="USERPROFILE/p"
PS C:\Users\myuser> ubuntu.exe
$ echo $USERPROFILE
/mnt/c/Users/myuser
$ ls /mnt/c/Users/myuser
AppData
'Application Data'
Contacts
Cookies
Desktop
[...]

And here we go! We now know where our user profile data is accessible on WSL thanks to environment variables
sharing. But more generally, environment variables could be used in your scripts, or any services in your WSL instance,
where parameters are controlled from Windows.

Going further:

• There are many other flags available for environment variables sharing via WSLENV. Check out the reference
section to have a look at some handy links explaining each of them.

• The place where your Windows filesystems are mounted can vary depending on your configuration. This can be
changed with our configuration tool on Ubuntu 22.04+ or by modifying the automount section in wsl.conf.

With this, we are now ready to generate some statistics on your Windows user profile directory from our WSL instance!

2.1. Tutorials 15

https://learn.microsoft.com/en-us/windows/wsl/wsl-config

Ubuntu WSL

Accessing Windows file from Ubuntu to run our script

After this little detour into the command line world to discover which path to use, let’s go back to our Jupyter interface
in our browser running on Windows.

We are going to create a stats-raw.csv file, containing statistics about our user profile directory.

Some preliminary warnings: accessing Windows filesystem from Ubuntu is using the 9P protocol, which might mean
slower access and indexing of files than native performance. So that this section doesn’t take too long to complete, we
are advising you to choose a subdirectory or your Windows user profile directory, with fewer files and directories to
run over. We will call it here /mnt/c/Users/mysuser/path/my/subdirectory.

From the Jupyter main screen, create a new notebook to start developing an interactive Python solution. You can do
this by clicking on the New button, and then clicking on the Python 3 option, as we can see below.

Copy this to the first cell, adapting the input directory:

import os
import mimetypes
import csv

data = {}

for root, dirs, files in os.walk("/mnt/c/Users/mysuser/path/my/subdirectory"):
for f in files:
mime_type, encoding = mimetypes.guess_type(os.path.join(root, f))
if not mime_type:
continue

if mime_type not in data:
data[mime_type] = 0

data[mime_type] += 1

csv_cols = ["mime_type", "count"]
with open("stats-raw.csv", "w") as f:

writer = csv.writer(f)
writer.writerow(csv_cols)
for mime_type, count in data.items():
writer.writerow([mime_type, count])

(continues on next page)

16 Chapter 2. Ubuntu and WSL

https://en.wikipedia.org/wiki/9P_(protocol)

Ubuntu WSL

(continued from previous page)

print(data)

This script will enumerate all files under /mnt/c/Users/mysuser/path/my/subdirectory, get the mime types of
each entry, and count them. It will write the result in your Ubuntu user home directory as a Comma-separated Values
file named stats-raw.csv and print it as well for your viewing pleasure. :)

Let’s execute it by clicking on the “Run” button in the web interface.

Note that while the entry is running, you will have a In [*] with the star marker. This will be replaced by In [1]:
when completed. Once done and the results are printed, let’s ensure that the CSV file is present on disk using an Ubuntu
terminal:

$ cat stats-raw.csv
mime_type,count
text/plain,468
chemical/x-cerius,3
application/x-pkcs12,5
application/zip,27
text/x-chdr,522
text/markdown,840
text/x-c++src,235
application/json,1199

(continues on next page)

2.1. Tutorials 17

https://en.wikipedia.org/wiki/Comma-separated_values

Ubuntu WSL

(continued from previous page)

application/xml,305
application/javascript,250
text/css,49
image/png,3459
image/svg+xml,534
application/vnd.ms-pki.seccat,2
application/x-msdos-program,583
chemical/x-pdb,20
chemical/x-cache,13
chemical/x-ncbi-asn1-binary,3
image/vnd.microsoft.icon,91
[...]

Accessing Ubuntu files from Windows

So, we now have a stat file on Ubuntu, which is the result of computation on files stored on the Windows partition. We
now want to analyse this file using Windows tools, but first, can we access it from Windows?

Of course, interoperability goes both ways, and we already know exactly how to discover where those are available on
Windows: introducing sharing environment variable round 2!

Start PowerShell from Ubuntu and share the HOME directory

Similarly to USERPROFILE, we want, this time, to share the user HOME variable with Windows, and let interoperability
translate it to a Windows-compatible path. Let’s do this right away from an Ubuntu terminal:

$ export WSLENV=HOME/p
$ cmd.exe
C:\Windows> set HOME
HOME=\\wsl.localhost\Ubuntu\home\u
C:\Windows> exit

First, we are able to export the HOME variable to subprocess, telling us that we want to translate the path back to Windows
compatible paths by appending /p as we previously saw. But this is not all: we are running cmd.exe from an Ubuntu
terminal (which is itself running inside a PowerShell terminal), and get the corresponding Windows path! Even if that
sounds a little bit like inception, using this feature is just seamless: you are launching any process, Linux or Windows,
from your Ubuntu terminal. Inputs and outputs are connected and this complex machinery works flawlessly!

Accessing Linux files from Windows

Open Windows Explorer and navigate to that path to confirm they are visible there:

18 Chapter 2. Ubuntu and WSL

Ubuntu WSL

Let’s now create a PowerShell script, from Windows, on this Ubuntu filesystem and save it there:

You can open any editor, from notepad to a full-fledged IDE. Create a file named filter-less-than-five.ps1
under \\wsl.localhost\Ubuntu\home\<youruser> (with the following content:

$csvImport = $input | ConvertFrom-CSV

Create Array for Exporting out data
$csvArray = [System.Collections.ArrayList]@()

Filter lines where count less than 5
Foreach ($csvImportedItem in $csvImport){
if([int]$csvImportedItem.count -ge 5){

$csvArray += $csvImportedItem
}

}

$csvArray | convertTo-CSV -NoTypeInformation

This script will take a CSV-formatted content as input, filter any item which has less than 5 occurrences and will export
it to the standard output as another CVS-formatted content.

After saving, let’s check it’s available on the WSL side:

$ cat filter-less-than-five.ps1

You should see the file content there.

This PowerShell script, written from Windows on your Linux instance will be quite handy to create a pipeline between
applications.

2.1. Tutorials 19

Ubuntu WSL

Execute and connect Linux and Windows executables.

This is all very impressive, we have been able to share network, environment variables, paths, and files, and execute
processes interchangeably between Ubuntu and Windows. Let’s go one step further by chaining all of this together in
a single, but effective line:

$ cat stats-raw.csv | powershell.exe -ExecutionPolicy Bypass -File $HOME/filter-less-
→˓than-five.ps1 | tee stats.csv
"mime_type","count"
"text/plain","468"
"application/x-pkcs12","5"
"application/zip","27"
"text/x-chdr","522"
"text/markdown","840"
"text/x-c++src","235"
"application/json","1199"
"application/xml","305"
[...]

Let’s figure out what happens here:

1. We are executing a Linux application cat to display file content, hosted on Ubuntu.

2. We are then executing powershell.exe from Ubuntu which:

3. Takes as input the content piped from Ubuntu.

4. This PowerShell application uses a script, hosted on Ubuntu (that we wrote from Windows in the previous sec-
tion), converted transparently to a Windows path for PowerShell to be able to consume it.

5. Then, the script proceeds with some operations on the content and prints on stdout the filtered CSV data.

6. This is then piped back to Ubuntu, to be processed by the tee command, which writes stats.csv to the Ubuntu
filesystem, and displays the resulting output.

This simple command exercises many concepts of interoperability we saw in previous sections. However, as you can
see, this is completely transparent to us!

This deep integration for back-and-forth access between systems allows users to create awesome pipelines, taking the
best tool that is available, independent of their host operating system. To make that easy, WSL transparently converts
any paths and does the heavy lifting for you so that you don’t need to do the manual conversion!

And finally, we can even run the default associated GUI Windows application associated with those files, from Ubuntu:

$ explorer.exe stats.csv

Note: You can’t deny it’s really amazing to be able to execute explorer.exe from Ubuntu. :)

This will open LibreOffice, Microsoft Excel, or any other tool you may have associated with CSV files. From there,
you will be able to draw beautiful charts, make further analyses, and so on. But that’s another story. . .

20 Chapter 2. Ubuntu and WSL

Ubuntu WSL

Enjoy Ubuntu on WSL!

That’s all folks! In this tutorial, we’ve shown you many aspects of interoperability on WSL. To sum it up, we can:

• Run Ubuntu commands from a Windows PowerShell prompt such as cut, grep, or awk

• Run Windows commands from an Ubuntu Terminal such as explorer.exe or notepad.exe

• Share network ports between Ubuntu and Windows systems.

• Share environment variables between Ubuntu and Windows systems.

• Open files on the Windows file system from Ubuntu.

• Browse the Ubuntu file system from Windows Explorer.

• Pipe and connect any commands or applications between Ubuntu and Windows systems.

We hope you enjoy using Ubuntu inside WSL. Don’t forget to check out our other tutorials for tips on how to optimise
your WSL experience.

Further Reading

• WSL ENV documentation

• WSL.conf documentation

• Jupyter notebook

• Install Ubuntu on WSL2

• Microsoft WSL Documentation

2.1. Tutorials 21

https://devblogs.microsoft.com/commandline/share-environment-vars-between-wsl-and-windows/
https://learn.microsoft.com/en-us/windows/wsl/wsl-config
https://jupyter.org/
https://learn.microsoft.com/en-us/windows/wsl/

Ubuntu WSL

• Ask Ubuntu

2.1.3 Run a .Net Echo Bot as a systemd service on Ubuntu WSL

Authored by Oliver Smith (oliver.smith@canonical.com)

.Net is an open-source development platform from Microsoft that enables developers to build multi-platform applica-
tions from a single codebase.

In this tutorial we demonstrate how easy it is to start working with .Net on Ubuntu WSL by creating a simple chatbot
accessible from your Windows host. We also take advantage of WSL’s new systemd support to run our bot as a systemd
service for easier deployment.

Requirements

• A PC running Windows 11

• The latest version of the WSL Windows Store application

• Ubuntu, Ubuntu 22.04 LTS or Ubuntu Preview installed

Systemd support is a new feature of WSL and only available on WSL version XX or higher.

You can check your current WSL version by running:

> wsl -- version

In your PowerShell terminal.

To enable systemd on your Ubuntu distribution you need to add the following content to /etc/wsl.conf:

[boot] systemd=true

Make sure to restart your distribution after you have made this change.

Install .Net

.Net has recently been added to the Ubuntu repositories. This means you can now quickly install a bundle with both
the SDK and runtime with a single command:

$ sudo apt install dotnet6

Run dotnet --version to confirm that the package was installed successfully.

It is recommended to create a new directory for this project, do so now and navigate to it before proceeding:

$ sudo mkdir ~/mybot $ cd mybot

Install and run the Bot Framework EchoBot template

Create a new directory for the project and navigate to it before proceeding:

$ sudo mkdir ~/mybot $ cd mybot

Once inside we can install the EchoBot C# template by running:

$ dotnet new -i Microsoft.Bot.Framework.CSharp.EchoBot

We can verify the template has been installed correctly by running:

$ dotnet new --list

22 Chapter 2. Ubuntu and WSL

https://askubuntu.com/
mailto:oliver.smith@canonical.com
https://ubuntu.com/blog/install-dotnet-on-ubuntu

Ubuntu WSL

And looking for the Bot Framework Echo Bot template in the list.

Create a new Echo Bot project using the following command. We use echoes as the name for our bot.

$ dotnet new echobot -n echoes

Once this has completed we can navigate into the new directory that has been created.

$ cd ~/mybot/echoes

Once inside, the project should be ready to run. Test it with:

$ sudo dotnet run

If everything was set up correctly you should see a similar output to the one below:

Leave the EchoBot App running in WSL for now. Open a new browser window on your Windows host and navigate to
localhost:3978 where you should see the following window:

2.1. Tutorials 23

Ubuntu WSL

Leave everything running as we move to the next step.

Install the Bot Emulator on Windows and connect to your bot

Download the Bot Emulator from the official Microsoft GitHub, taking care to select BotFramework-Emulator-4.14.1-
windows-setup.exe and install.

Running it will present you with the following screen, but before you can connect to your bot you need to change a few
settings.

24 Chapter 2. Ubuntu and WSL

https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v4.14.1
https://github.com/microsoft/BotFramework-Emulator/releases/download/v4.14.1/BotFramework-Emulator-4.14.1-windows-setup.exe
https://github.com/microsoft/BotFramework-Emulator/releases/download/v4.14.1/BotFramework-Emulator-4.14.1-windows-setup.exe

Ubuntu WSL

First, get the IP address of your machine by running ipconfig in a PowerShell terminal.

Then select the setting icon in the corner of the Bot Framework Emulator and enter your IP under ‘localhost override’.

2.1. Tutorials 25

Ubuntu WSL

Click save and navigate back to the Welcome tab.

Click ‘Open Bot’ and under ‘Bot URL’ input:

http://localhost:3978/api/messages

26 Chapter 2. Ubuntu and WSL

Ubuntu WSL

And click ‘Connect’ to connect to your Echo Bot running in WSL and start

chatting!

2.1. Tutorials 27

Ubuntu WSL

Congratulations, your Echo Chat Bot App is running on Ubuntu WSL as an App. Now it is time to make it run as a
service.

Running your Echo Bot as a systemd service

Return to your running WSL distro and end the app with Ctrl+C.

Then install the .Net systemd extension with:

$ sudo dotnet add package Microsoft.Extensions.Hosting.Systemd

Now we need to open our ‘echoes’ project in VS Code by running:

$ code .

From the ‘echoes’ directory.

Navigate to ‘Program.cs’ and insert .UserSystemd() as a new line in the location shown in the screenshot.

Save and close the project in VS code and return to your WSL terminal.

Next we need to create a service file for your bot using your favourite editor, for example.

$ sudo nano /etc/systemd/system/echoes.service

Then paste the below taking care to change the path of WorkingDirectory to the location of your project folder.

[Unit]
Description=The first ever WSL Ubuntu systemd .NET ChatBot Service

[Service]
WorkingDirectory=/home/local-optimum/demos/mybot/echoes
Environment=DOTNET_CLI_HOME=/temp

(continues on next page)

28 Chapter 2. Ubuntu and WSL

Ubuntu WSL

(continued from previous page)

ExecStart=dotnet run
SyslogIdentifier=echoes

[Install]
WantedBy=multi-user.target

Save your file and reload your services with:

$ sudo systemctl daemon-reload

To reload the services. You can check if your service is ready by running:

$ systemctl status echoes.service

You should get the following output:

Now start your service and then check its status again.

$ sudo systemctl start echoes.service $ sudo systemctl status echoes.service

If everything has been configured correctly you should get an output similar to the below.

2.1. Tutorials 29

Ubuntu WSL

Return to your Windows host and reconnect to your Bot Emulator using the same information as before and confirm
that your bot is running, but this time as a systemd service!

30 Chapter 2. Ubuntu and WSL

Ubuntu WSL

You can stop your bot from running at any time with the command:

$ sudo systemctl stop echoes.service

Tutorial complete!

You now have a simple Echo Bot running as a systemd service on WSL that you can access from your host Windows
machine.

If you would like to expand on this example try reviewing some of the more advanced Bot Framework samples on the
Microsoft GitHub.

To read more about how Ubuntu supports .Net developers, making it easier than ever to build multi-platform services
and applications, read our recent announcement.

Further Reading

• .Net on Ubuntu

• Bot Framework samples

• Enabling GPU acceleration on Ubuntu on WSL2 with the NVIDIA CUDA Platform

• Windows and Ubuntu interoperability on WSL2

• Microsoft WSL Documentation

• Ask Ubuntu

2.1. Tutorials 31

https://github.com/Microsoft/BotBuilder-Samples/blob/main/README.md
https://ubuntu.com/blog/install-dotnet-on-ubuntu
https://ubuntu.com/blog/install-dotnet-on-ubuntu
https://github.com/Microsoft/BotBuilder-Samples/blob/main/README.md
https://learn.microsoft.com/en-us/windows/wsl/
https://askubuntu.com/

Ubuntu WSL

2.1.4 Enabling GPU acceleration with the NVIDIA CUDA Platform

Authored by Carlos Nihelton (carlos.santanadeoliveira@canonical.com)

While WSL’s default setup allows you to develop cross-platform applications without leaving Windows, enabling GPU
acceleration inside WSL provides users with direct access to the hardware. This provides support for GPU-accelerated
AI/ML training and the ability to develop and test applications built on top of technologies, such as OpenVINO,
OpenGL, and CUDA that target Ubuntu while staying on Windows.

What you will learn:

• How to install a Windows graphical device driver compatible with WSL2

• How to install the NVIDIA CUDA toolkit for WSL 2 on Ubuntu

• How to compile and run a sample CUDA application on Ubuntu on WSL2

What you will need:

• A Windows 10 version 21H2 or newer physical machine equipped with an NVIDIA graphics card and adminis-
trative permission to be able to install device drivers

• Ubuntu on WSL2 previously installed

• Familiarity with Linux command line utilities and interacting with Ubuntu on WSL2

Note: If you need more introductory topics, such as how to install Ubuntu on WSL, refer to previous
tutorials that can be found here.

Prerequisites

The following steps assume a specific hardware configuration. Although the concepts are essentially the same for other
architectures, different hardware configurations will require the appropriate graphics drivers and CUDA toolkit.

Make sure the following prerequisites are met before moving forward:

• A physical machine with Windows 10 version 21H2 or higher

• NVIDIA’s graphic card

• Ubuntu 20.04 or higher installed on WSL 2

• Broadband internet connection able to download a few GB of data

Install the appropriate Windows vGPU driver for WSL

Specific drivers are needed to enable use of a virtual GPU, which is how Ubuntu applications are able to
access your GPU hardware, so you’ll need to follow this step even if your system drivers are up-to-date.

Please refer to the official WSL documentation for up-to-date links matching your specific GPU vendor. You can find
these in Install support for Linux GUI apps > Prerequisites . For this example, we will download the
NVIDIA GPU Driver for WSL.

32 Chapter 2. Ubuntu and WSL

mailto:carlos.santanadeoliveira@canonical.com
https://learn.microsoft.com/en-us/windows/wsl/tutorials/gui-apps

Ubuntu WSL

Note: This is the only device driver you’ll need to install. Do not install any display driver on Ubuntu.

Once downloaded, double-click on the executable file and click Yes to allow the program to make changes to your
computer.

2.1. Tutorials 33

Ubuntu WSL

Confirm the default directory and allow the self-extraction process to proceed.

34 Chapter 2. Ubuntu and WSL

Ubuntu WSL

A splash screen appears with the driver version number and quickly turns into the main installer window. Read and
accept the license terms to continue.

Confirm the wizard defaults by clicking Next and wait until the end of the installation. You might be prompted to

2.1. Tutorials 35

Ubuntu WSL

restart your computer.

36 Chapter 2. Ubuntu and WSL

Ubuntu WSL

This step ends with a screen similar to the image below.

2.1. Tutorials 37

Ubuntu WSL

Install NVIDIA CUDA on Ubuntu

Normally, CUDA toolkit for Linux will have the device driver for the GPU packaged with it. On WSL 2,
the CUDA driver used is part of the Windows driver installed on the system, and, therefore, care must be
taken not to install this Linux driver as previously mentioned.

The following commands will install the WSL-specific CUDA toolkit version 11.6 on Ubuntu 22.04 AMD64 architec-
ture. Be aware that older versions of CUDA (<=10) don’t support WSL 2. Also notice that attempting to install the
CUDA toolkit packages straight from the Ubuntu repository (cuda, cuda-11-0, or cuda-drivers) will attempt to
install the Linux NVIDIA graphics driver, which is not what you want on WSL 2. So, first remove the old GPG key:

sudo apt-key del 7fa2af80

Then setup the appropriate package for Ubuntu WSL:

wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/
x86_64/cuda-wsl-ubuntu.pin

sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600

sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/
cuda/repos/wsl-ubuntu/x86_64/3bf863cc.pub

sudo add-apt-repository 'deb https://developer.download.nvidia.com/compute/
cuda/repos/wsl-ubuntu/x86_64/ /'

sudo apt-get update

38 Chapter 2. Ubuntu and WSL

Ubuntu WSL

sudo apt-get -y install cuda

Once complete, you should see a series of outputs that end in done.:

Congratulations! You should have a working installation of CUDA by now. Let’s test it in the next step.

2.1. Tutorials 39

Ubuntu WSL

Compile a sample application

NVIDIA provides an open source repository on GitHub with samples for CUDA Developers to explore the features
available in the CUDA Toolkit. Building one of these is a great way to test your CUDA installation. Let’s choose the
simplest one just to validate that our installation works.

Let’s say you have a ~/Dev/ directory where you usually put your working projects. Navigate inside the directory and
git clone the cuda-samples repository:

cd ~/Dev

git clone https://github.com/nvidia/cuda-samples

To build the application, go to the cloned repository directory and type make:

cd ~/Dev/cuda-samples/Samples/1_Utilities/deviceQuery

make

A successful build will look like the screenshot below. Once complete, run the application:

./deviceQuery

You should see a similar output to the following detailing the functionality of your CUDA setup (the exact results
depend on your hardware setup):

40 Chapter 2. Ubuntu and WSL

https://github.com/nvidia/cuda-samples

Ubuntu WSL

2.1. Tutorials 41

Ubuntu WSL

Enjoy Ubuntu on WSL!

That’s all folks! In this tutorial, we’ve shown you how to enable GPU acceleration on Ubuntu on WSL 2 and demon-
strated its functionality with the NVIDIA CUDA toolkit, from installation through to compiling and running a sample
application.

We hope you enjoy using Ubuntu inside WSL for your Data Science projects. Don’t forget to check out our blog for
the latest news on all things Ubuntu.

Further Reading

• Setting up WSL for Data Science

• Ubuntu WSL for Data Scientists Whitepaper

• NVIDIA’s CUDA Post Installation Actions

• Install Ubuntu on WSL2

• Microsoft WSL Documentation

• Ask Ubuntu

2.1.5 Use WSL for data science and engineering

Authored by Oliver Smith (oliver.smith@canonical.com) and edited by Edu Gómez Escandell
(edu.gomez.escandell@canonical.com)

WSL is an ideal platform to run your Linux workflows while using your Windows machines. Here we show an example
of how to set up GNU octave and run a toy program.

First, you’ll need to set up Ubuntu on WSL, see here.

GNU octave

GNU Octave is software featuring a high-level programming language, primarily intended for numerical
computations. Octave helps in solving linear and nonlinear problems numerically, and for performing
other numerical experiments using a language that is mostly compatible with MATLAB. [GNU / Octave]

We will use it to calculate and draw a beautiful Julia fractal. The goal here is to use Octave to demonstrate how WSLg
works, not to go through the theory of fractals.

First thing is to install the software like we did for x11-apps, from the terminal prompt run:

sudo apt update
sudo apt install -y octave

Then start the application:

octave --gui &

Do not forget the ampersand & at the end of the line, so the application is started in the background and we can continue
using the same terminal window.

42 Chapter 2. Ubuntu and WSL

https://ubuntu.com/blog
https://ubuntu.com/blog/wsl-for-data-scientist
https://ubuntu.com/engage/ubuntu-wsl-for-data-scientists
https://learn.microsoft.com/en-us/windows/wsl/
https://askubuntu.com/
mailto:oliver.smith@canonical.com
mailto:edu.gomez.escandell@canonical.com
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/MATLAB
https://octave.org/about.html

Ubuntu WSL

In Octave, click on the New script icon to open a new editor window and copy/paste the following code:

#{
Inspired by the work of Bruno Girin ([Geek Thoughts: Fractals with Octave: Classic␣
→˓Mandelbrot and Julia](http://brunogirin.blogspot.com/2008/12/fractals-with-octave-
→˓classic-mandelbrot.html))
Calculate a Julia set
zmin: Minimum value of c
zmax: Maximum value of c
hpx: Number of horizontal pixels
niter: Number of iterations
c: A complex number
#}
function M = julia(zmin, zmax, hpx, niter, c)

%% Number of vertical pixels
vpx=round(hpx*abs(imag(zmax-zmin)/real(zmax-zmin)));
%% Prepare the complex plane
[zRe,zIm]=meshgrid(linspace(real(zmin),real(zmax),hpx),
linspace(imag(zmin),imag(zmax),vpx));
z=zRe+i*zIm;
M=zeros(vpx,hpx);
%% Generate Julia
for s=1:niter

mask=abs(z)<2;
M(mask)=M(mask)+1;
z(mask)=z(mask).^2+c;

end
M(mask)=0;

end

2.1. Tutorials 43

Ubuntu WSL

This code is the function that will calculate the Julia set. Save it to a file named julia.m. Since it is a function
definition, the name of the file must match the name of the function.

Open a second editor window with the New Script button and copy and paste the following code:

Jc1=julia(-1.6+1.2i, 1.6-1.2i, 640, 128, -0.75+0.2i);
imagesc(Jc1)
axis off
colormap('default');

This code calls the function defined in julia.m. You can later change the parameters if you want to explore the Julia
fractal.

Save it to a file named juliatest.m.

And finally, press the button Save File and Run.

After a few seconds, depending on your hardware and the parameters, a Julia fractal is displayed.

44 Chapter 2. Ubuntu and WSL

Ubuntu WSL

Like Octave, this window is displayed using WSLg completely transparently to the user.

Enjoy!

Further Reading

• An introduction to numerical computation applications using Ubuntu WSL

• Setting up WSL for Data Science

• Whitepaper: Ubuntu WSL for Data Scientists

• Microsoft WSL Documentation

• Ask Ubuntu

2.1. Tutorials 45

https://www.youtube.com/watch?v=08WDGV0u58Y
https://ubuntu.com/blog/upgrade-data-science-workflows-ubuntu-wsl
https://ubuntu.com/engage/ubuntu-wsl-for-data-scientists
https://learn.microsoft.com/en-us/windows/wsl/
https://askubuntu.com/

Ubuntu WSL

2.1.6 Automatic setup with cloud-init

Authored by Carlos Nihelton (carlos.santanadeoliveira@canonical.com)

Cloud-init is an industry-standard multi-distribution method for cross-platform cloud instance initialisation. Ubuntu
WSL users can now leverage it to perform an automatic setup to get a working instance with minimal touch.

See more: cloud-init official documentation.

Note: *Coming soon:

That feature is currently in development and will be available soon on the UbuntuPreview app first, then gradually
released for the latest LTS applications.

What you will learn:

• How to write cloud-config user data to a specific WSL instance.

• How to automatically set up a WSL instance with cloud-init.

• How to verify that cloud-init succeeded with the configuration supplied.

What you will need:

• Windows 11 with WSL 2 already enabled

• The latest UbuntuPreview application from Microsoft Store.

Write the cloud-config file

Locate your Windows user home directory. It typically is C:\Users\<YOUR_USER_NAME>.

You can be sure about that path by running echo $env:USERPROFILE in PowerShell.

Inside your Windows user home directory, create a new folder named .cloud-init (notice the . à la Linux configu-
ration directories), and inside the new directory, create an empty file named Ubuntu-Preview.user-data. That file
name must match the name of the distro instance that will be created in the next step.

Open that file with your text editor of choice (notepad.exe is just fine) and paste in the following contents:

#cloud-config
locale: pt_BR
users:
- name: jdoe
gecos: John Doe
groups: [adm,dialout,cdrom,floppy,sudo,audio,dip,video,plugdev,netdev]
sudo: ALL=(ALL) NOPASSWD:ALL
shell: /bin/bash

write_files:
- path: /etc/wsl.conf
append: true
content: |
[user]

(continues on next page)

46 Chapter 2. Ubuntu and WSL

mailto:carlos.santanadeoliveira@canonical.com
https://cloudinit.readthedocs.io/en/latest/index.html

Ubuntu WSL

(continued from previous page)

default=jdoe

packages: [ginac-tools, octave]

runcmd:
- git clone https://github.com/Microsoft/vcpkg.git /opt/vcpkg
- /opt/vcpkg/bootstrap-vcpkg.sh

Save it and close it.

That example will create a user named jdoe and set it as default via /etc/wsl.conf, install the packages
ginac-tools and octave and install vcpkg from the git repository, since there is no deb or snap of that
application (hence the reason for being included in this tutorial - it requires an unusual setup).

See more: WSL data source reference.

Register a new Ubuntu-Preview instance

In PowerShell, run:

ubuntupreview.exe install --root

We skip the user creation since we expect cloud-init to do it.

If you want to be sure that there is now an Ubuntu-Preview instance, run wsl -l -v. Notice that the
application is named UbuntuPreview but the WSL instance created is named Ubuntu-Preview. See
more about that naming convention in our reference documentation.

Check that cloud-init is running

In PowerShell again run:

ubuntupreview run cloud-init status --wait

That will wait until cloud-init completes configuring the new instance we just created. When done, you should see an
output similar to the following:

..

..

..

...................
status: done

2.1. Tutorials 47

https://cloudinit.readthedocs.io/en/latest/reference/datasources/wsl.html

Ubuntu WSL

Verify that it worked

Restart the distro just to make sure the changes in /etc/wsl.conf made by cloud-init will take effect, as listed below:

> wsl -t Ubuntu-Preview
The operation completed successfully.
> ubuntupreview
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

Welcome to Ubuntu Noble Numbat (development branch) (GNU/Linux 5.15.137.3-microsoft-
→˓standard-WSL2 x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

This message is shown once a day. To disable it please create the
/home/cn/.hushlogin file.
jdoe@mib:~$

Once logged in the new distro instance’s shell, verify that:

1. The default user matches what was configured in the user data file (in our case jdoe).

jdoe@mib:~$ whoami
jdoe

2. The supplied cloud-config user data was approved by cloud-init validation.

jdoe@mib:~$ sudo cloud-init schema --system
Valid schema user-data

3. The locale is set

jdoe@mib:~$ locale
LANG=pt_BR
LANGUAGE=
LC_CTYPE="pt_BR"
LC_NUMERIC="pt_BR"
LC_TIME="pt_BR"
LC_COLLATE="pt_BR"
LC_MONETARY="pt_BR"
LC_MESSAGES="pt_BR"
LC_PAPER="pt_BR"
LC_NAME="pt_BR"
LC_ADDRESS="pt_BR"
LC_TELEPHONE="pt_BR"
LC_MEASUREMENT="pt_BR"
LC_IDENTIFICATION="pt_BR"
LC_ALL=

4. The packages were installed and the commands they provide are available

48 Chapter 2. Ubuntu and WSL

Ubuntu WSL

jdoe@mib:~$ apt list --installed | egrep 'ginac|octave'

WARNING: apt does not have a stable CLI interface. Use with caution in scripts.

ginac-tools/noble,now 1.8.7-1 amd64 [installed]
libginac11/noble,now 1.8.7-1 amd64 [installed,automatic]
octave-common/noble,now 8.4.0-1 all [installed,automatic]
octave-doc/noble,now 8.4.0-1 all [installed,automatic]
octave/noble,now 8.4.0-1 amd64 [installed]

5. Verify that the commands requested were also run. In this case we set up vcpkg from git, as recommended by
its documentation (there is no deb or snap available for that program).

jdoe@mib:~$ /opt/vcpkg/vcpkg version
vcpkg package management program version 2024-01-11-
→˓710a3116bbd615864eef5f9010af178034cb9b44

See LICENSE.txt for license information.

Enjoy!

That’s all folks! In this tutorial, we’ve shown you how to use cloud-init to automatically set up Ubuntu on WSL 2 with
minimal touch.

This workflow will guarantee a solid foundation for your next Ubuntu WSL project.

We hope you enjoy using Ubuntu inside WSL!

2.2 How-to guides

2.2.1 Install Ubuntu on WSL2

Authored by Oliver Smith (oliver.smith@canonical.com) and edited by Edu Gómez Escandell
(edu.gomez.escandell@canonical.com)

What you will learn:

• How to enable and install WSL on Windows 10 and Windows 11

• How to install and run a simple graphical application that uses WSLg

• How to install and run a much more advanced application that uses WSLg

2.2. How-to guides 49

mailto:oliver.smith@canonical.com
mailto:edu.gomez.escandell@canonical.com

Ubuntu WSL

What you will need:

• A Windows 10 or Windows 11 physical or virtual machine with all the updates installed

Install WSL

WSL can be installed from the command line. Open a PowerShell prompt as an Administrator (we recommend using
Windows Terminal) and run:

wsl --install

This command will enable the features necessary to run WSL and also install the default Ubuntu distribution of Linux
available in the Microsoft Store. It is recommended to reboot your machine after this initial installation to complete
the setup. You can also install WSL from the Microsoft Store.

Install Ubuntu WSL

WSL supports a variety of Linux distributions including the latest Ubuntu release. Check out the documentation to see
which one you prefer. For the rest of this tutorial we’ll use Ubuntu as the example.

There are multiple ways of installing distros on WSL, here we show three: via the Microsoft store, via Winget, and the
WSL CLI. The result is equivalent.

Method 1: Microsoft store

Find the distribution you prefer on the Microsoft Store and then select Get.

50 Chapter 2. Ubuntu and WSL

Ubuntu WSL

Ubuntu will then be installed on your machine. Once installed, you can either launch the application directly from the
store or search for Ubuntu in your Windows search bar.

2.2. How-to guides 51

Ubuntu WSL

Method 2: WSL Command line interface

It is possible to install the same Ubuntu applications available on the Windows Store directly from the command line.
In a PowerShell terminal, you can run wsl --list --online to see all available distros.

52 Chapter 2. Ubuntu and WSL

Ubuntu WSL

You can install a distro using the NAME by running:

wsl --install -d Ubuntu-20.04

Use wsl -l -v to see all your currently installed distros and which version of WSL they are using:

2.2. How-to guides 53

Ubuntu WSL

Method 3: Winget

Open a PowerShell terminal and type:

winget show --name Ubuntu --source msstore

You’ll see a list of distros available and their ID. Choose the one you prefer and install it. For instance, Ubuntu:

winget install --Id "9PDXGNCFSCZV" --source msstore

You’ll be prompted to accept the source and package agreements before installing. You need to accept them in order
to proceed.

Check out the documentation to see which executable matches your application and run it.

ubuntu.exe

Configure Ubuntu

Congratulations, you now have an Ubuntu terminal running on your Windows machine!

Once it has finished its initial setup, you will be prompted to create a username and password. They don’t need to match
your Windows user credentials.

Finally, it’s always good practice to install the latest updates with the following commands, entering your password
when prompted.

sudo apt update
sudo apt full-upgrade -y

54 Chapter 2. Ubuntu and WSL

Ubuntu WSL

Enjoy Ubuntu on WSL!

That’s it! In this tutorial, we’ve shown you how to install WSL and Ubuntu on Windows 11, set up your profile, install
a few packages, and run a graphical application.

We hope you enjoy working with Ubuntu inside WSL. Don’t forget to check out our blog for the latest news on all
things Ubuntu.

Further Reading

• Setting up WSL for Data Science

• Whitepaper: Ubuntu WSL for Data Scientists

• Microsoft WSL Documentation

• Ask Ubuntu

2.2.2 Using the Auto-installation feature

Warning: This feature has been deprecated and is no longer supported. Stay tuned for upcoming support for
Cloud-init.

Note: See more: Cloud init | Home

2.2.3 How to run your WSL GitHub workflow on Azure

Read more: How we improved testing Ubuntu on WSL – and how you can too!

Most of the time, what works on Ubuntu desktop works on WSL as well. However, there are some exceptions. Fur-
thermore, you may want to test software that lives both on Windows and inside WSL. In these cases, you may want to
run your automated testing on a Windows machine with WSL rather than a regular ubuntu machine.

There exist Windows GitHub runners, but they do not support the latest version of WSL. The reason is that WSL is
now a Microsoft Store application, which requires a logged-in user. GitHub runners, however, run as a service. This
means that they are not on a user session, hence they cannot run WSL (or any other store application).

Read more: What’s new in the Store version of WSL?

Summary

We propose you run your automated tests on a Windows virtual machine hosted on Azure. This machine will run the
GitHub actions runner not as a service, but as a command-line application.

2.2. How-to guides 55

https://ubuntu.com/blog
https://ubuntu.com/blog/upgrade-data-science-workflows-ubuntu-wsl
https://ubuntu.com/engage/ubuntu-wsl-for-data-scientists
https://learn.microsoft.com/en-us/windows/wsl/
https://askubuntu.com/
https://cloud-init.io/
https://ubuntu.com/blog/improved-testing-ubuntu-wsl
https://devblogs.microsoft.com/commandline/the-windows-subsystem-for-linux-in-the-microsoft-store-is-now-generally-available-on-windows-10-and-11/

Ubuntu WSL

Step-by-step

This guide will show you how to set up an Azure VM to run your WSL workflows.

1. Create a Windows 11 VM on Azure: follow Azure’s instructions, no special customisation is necessary.

Note: You can use any other hosting service. We use Azure in this guide because that is what we use
for our CI.

2. Install WSL with wsl --install.

3. Enable automatic logon: use the registry to set up your machine to log on automatically. Explanation here.

4. Add your runner to your repository: head to your repository’s page on GitHub > Settings > Actions > Runners >
New self-hosted runner. Follow the instructions. Make sure you do not enable running it as a service.

5. Set up your runner as a startup application:

1. Go to the directory you installed the GitHub runner.

2. Right-click on the run.cmd file, and click Show more options > Send to > Desktop (create shortcut).

3. Press Win+R, type shell:startup and press OK. A directory will open.

4. Find the shortcut in the desktop and drag it to the startup directory.

6. Set up your repository secrets To add a new secret, head to your repository’s page on GitHub > Settings > Secrets
> Actions > New repository secret. You’ll need the following secret:

• AZURE_VM_CREDS: See the documentation here.

7. Create your GitHub workflow. This workflow must have at least three jobs which depend each on the previous
one.

1. Start up the VM

2. Your workflow(s)

3. Stop the VM

It is also recommended to add a concurrency directive to prevent different workflows from interleaving steps
1 and 3.

8. Use our actions. We developed some actions to help you build your workflow. They are documented in the WSL
GitHub actions reference.

Example repositories

The following repositories use some variation of the workflow explained here.

• Ubuntu/WSL-example hello world example

• Ubuntu/WSL-example cloud-init testing

• Ubuntu/WSL end-to-end tests

56 Chapter 2. Ubuntu and WSL

https://learn.microsoft.com/en-us/troubleshoot/windows-server/user-profiles-and-logon/turn-on-automatic-logon
https://github.com/Azure/login#configure-deployment-credentials
https://github.com/ubuntu/wsl-actions-example/blob/main/.github/workflows/test_wsl.yaml
https://github.com/ubuntu/wsl-actions-example/blob/main/.github/workflows/test_cloud_init.yaml
https://github.com/ubuntu/WSL/blob/main/.github/workflows/e2e.yaml

Ubuntu WSL

2.3 Reference

2.3.1 Distributions

Our flagship distribution is Ubuntu. This is the one that is installed by default when you install WSL for the first time.
However, we develop several flavours. It may be the case that one or more of these flavours fits your needs better.

Each of these flavours corresponds to a different application on the Microsoft Store, and once installed, they’ll create
different distros in your WSL. These are the applications we develop and maintain:

• Ubuntu ships the latest stable LTS release of Ubuntu. When new LTS versions are released, Ubuntu can be
upgraded once the first point release is available.

• Ubuntu 18.04.6 LTS, Ubuntu 20.04.6 LTS, and Ubuntu 22.04.3 LTS are the LTS versions of Ubuntu and receive
updates for five years. Upgrades to future LTS releases will not be proposed.

• Ubuntu (Preview) is a daily build of the latest development version of Ubuntu previewing new features as they
are developed. It does not receive the same level of QA as stable releases and should not be used for production
workloads.

Naming

Due to different limitations in different contexts, these applications will have different names in different contexts. Here
is a table matching them.

1. App name is the name you’ll see in the Microsoft Store and Winget.

2. AppxPackage is the name you’ll see in Get-AppxPackage.

3. Distro name is the name you’ll see when doing wsl -l -v or wsl -l --online.

4. Executable is the program you need to run to start the distro.

App name AppxPackage name Distro name Executable
Ubuntu CanonicalGroupLimited.Ubuntu Ubuntu ubuntu.exe
Ubuntu (Preview) CanonicalGroupLimited.

UbuntuPreview
Ubuntu-Preview ubuntupreview.

exe
Ubuntu XX.YY.Z
LTS

CanonicalGroupLimited.UbuntuXX.
YYLTS

Ubuntu-XX.YY ubuntuXXYY.exe

2.3.2 GitHub actions

Download rootfs

Download the latest Rootfs tarball for a particular release of Ubuntu WSL. This can be used when you need better
granularity than what is offered by wsl-install, or you want to cache the rootfs.

Its arguments are:

• distros: a comma-separated list of distros to download. Use the names as shown in WSL. Read more: Ubuntu
WSL distributions. Defaults to Ubuntu.

• path: the path where to store the tarball. The tarball will end up as ${path}\${distro}.tar.gz. PowerShell-
style environment variables will be expanded. If there already exists a tarball at the download path, a checksum
comparison will be made to possibly skip the download.

2.3. Reference 57

https://apps.microsoft.com/detail/9PDXGNCFSCZV?hl=en-us&gl=US
https://apps.microsoft.com/detail/9PNKSF5ZN4SW?hl=en-us&gl=US
https://apps.microsoft.com/detail/9MTTCL66CPXJ?hl=en-us&gl=US
https://apps.microsoft.com/detail/9PN20MSR04DW?hl=en-us&gl=US
https://apps.microsoft.com/detail/9P7BDVKVNXZ6?hl=en-us&gl=US

Ubuntu WSL

Example usage:

- name: Download Jammy rootfs
uses: Ubuntu/WSL/.github/actions/download-rootfs@main
with:
distro: Ubuntu-22.04
path: '${env:UserProfile}\Downloads\rootfs'

WSL install

See also: download-rootfs

This action installs the Windows Subsystem for Linux application, and optionally an Ubuntu WSL application.

Its arguments are:

• distro: Optional argument

– Blank (default): don’t install any Ubuntu WSL distro

– Distro name: any of the available distros in the Microsoft store. Write its name as shown in WSL. Read
more: Ubuntu WSL distributions

Example usage:

- name: Install or update WSL
uses: Ubuntu/WSL/.github/actions/wsl-install@main
with:
distro: Ubuntu-20.04

WSL checkout

This action checks out your repository in a WSL distro. If you want to check it out on the Windows file system, use the
regular actions/checkout action instead. Example usage:

Its arguments are:

• distro: an installed WSL distro. Write its name as it would appear on WSL. Read more: Ubuntu WSL distri-
butions

• working-dir: the path where the repository should be cloned. Set to ~ by default.

• submodules:: Whether to fetch sub-modules or not. False by default.

Example usage:

- name: Check out the repository
uses: Ubuntu/WSL/.github/actions/wsl-checkout@main
with:
distro: Ubuntu-20.04
working-dir: /tmp/github/
submodules: true

58 Chapter 2. Ubuntu and WSL

Ubuntu WSL

WSL bash

This action runs arbitrary bash code in your distro.

Its arguments are:

• distro: an installed WSL distro. Write its name as it would appear on WSL. Read more: Ubuntu WSL distri-
butions

• exec: the script to run.

• working-dir: path to the WSL directory to run the script in. Set to ~ by default.

Example usage:

- name: Install pip
uses: Ubuntu/WSL/.github/actions/wsl-bash@main
with:
distro: Ubuntu-20.04
working-dir: /tmp/github/
exec: |

DEBIAN_FRONTEND=noninteractive sudo apt update
DEBIAN_FRONTEND=noninteractive sudo apt install python3-pip

2.3. Reference 59

	Windows Subsystem for Linux
	Ubuntu and WSL
	Tutorials
	Working with Visual Studio Code
	What you will learn:
	What you will need:
	Install Ubuntu on WSL2
	Install Visual Studio Code on Windows
	Install the Remote Development Extension
	Install Node.js and create a new project
	Creating a basic web server
	Enjoy Ubuntu on WSL!
	Further Reading

	Windows and Ubuntu interoperability
	What you will learn:
	What you will need:
	Install Ubuntu on WSL2
	Share ports between WSL and Windows
	Install Jupyter notebook on WSL.
	Executing Jupyter notebook.
	Accessing port 8888

	Get access to Windows environment variables on WSL
	Accessing Windows file from Ubuntu to run our script
	Accessing Ubuntu files from Windows
	Start PowerShell from Ubuntu and share the HOME directory
	Accessing Linux files from Windows

	Execute and connect Linux and Windows executables.
	Enjoy Ubuntu on WSL!
	Further Reading

	Run a .Net Echo Bot as a systemd service on Ubuntu WSL
	Requirements
	Install .Net
	Install and run the Bot Framework EchoBot template
	Install the Bot Emulator on Windows and connect to your bot
	Running your Echo Bot as a systemd service
	Tutorial complete!
	Further Reading

	Enabling GPU acceleration with the NVIDIA CUDA Platform
	What you will learn:
	What you will need:
	Prerequisites
	Install the appropriate Windows vGPU driver for WSL
	Install NVIDIA CUDA on Ubuntu
	Compile a sample application
	Enjoy Ubuntu on WSL!
	Further Reading

	Use WSL for data science and engineering
	GNU octave
	Further Reading

	Automatic setup with cloud-init
	What you will learn:
	What you will need:
	Write the cloud-config file
	Register a new Ubuntu-Preview instance
	Check that cloud-init is running
	Verify that it worked
	Enjoy!

	How-to guides
	Install Ubuntu on WSL2
	What you will learn:
	What you will need:
	Install WSL
	Install Ubuntu WSL
	Method 1: Microsoft store
	Method 2: WSL Command line interface
	Method 3: Winget

	Configure Ubuntu
	Enjoy Ubuntu on WSL!
	Further Reading

	Using the Auto-installation feature
	How to run your WSL GitHub workflow on Azure
	Summary
	Step-by-step
	Example repositories

	Reference
	Distributions
	Naming

	GitHub actions
	Download rootfs
	WSL install
	WSL checkout
	WSL bash

